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PREFACE

The Rand Corporation recently developed new analytic methods for

studying the transient behavior of component-repair/inventory systems

under time-dependent operational demands and logistics decisions like

those that might be experienced in wartime (Hillestad and Carrillo,

1980). These methods have culminated in the Dyna-METRIC mathematical

model described in this report.

Dyna-METRIC evolved through a series of projects that addressed

policies for improving aircraft readiness and supportability.

Initially, the dynamic queueing equations were developed and applied to

the problem of determining appropriate levels of spare engines for the

C-141 aircraft to support planned wartime surges in flying activity

(Berman, Lippiatt, and Sims, 1978). Later, indentured component

features and aircraft availability performance measures were added to

s-,-' alternative logistics policies for carrier-based aircraft

squadrons in the Defense Resources Management Study (Rice, 1979).

Further features were added to enable the study of multiple bases of

aircraft and their dependence on transportation of spare parts, in

support of the Project AIR FORCE project "Responsive Intra-Theater

Transportation System for Spare Parts." The model was then extended to

include test equipment, limited service capacity, and test-equipment

failure probability in the Project AIR FORCE project "Supporting Modern

Tactical Avionics." Centralized repair and resupply capability features

were added to allow the Dyna-METRIC model to be embedded in the

experimental Combat Support Capability Management System being tested in



the Pacific Air Forces (PACAF) unJer the Project AIR FORCE project

"Combat Support Capability Managem 1it System." Most important, the

models will be used in the Air Force's Worldwide Combat Supplies

Management System (CSMS).[l]

Other initial implementations of the Dyna-METRIC model have been

used by the Ogden Air Logistics Center, Air Force Logistics Command

(AFLC), for studying USAF F-4 and F-16 aircraft readiness and

supportability; by Headquarters AFLC for F100 engine evaluations; and by

the Tactical Air Command to study the effect of several repair and

supply strategies on the readiness and deployability of F-15 tactical

squadrons.

This report is intended for users of the Dyna-METRIC computer model

and for others who wish to understand the model's underlying

mathematics. Complex theory has deliberately been avoided to facilitate

this understanding. Hillestad and Carrillo (1980) describe some of the

mathemat.-s with greater theoretical rigor. The report does, however,

assume in the reader a basic knowledge of calculus and probability

theory.

The report describes the mathematical approaches to modeling the

effects of spare parts supply, component repai and related processes

on combat capability. It does not describe the implementation of any

specific version of Dyna-METRIC. The actual implementation is described

in a forthcoming program description document (Pyles et al., 1982).

[1] Actually there are several programmed versions of Dyna-METRIC.
The version being embedded in CSMS is referred to as Dyna-METRIC, while
all other versions are called RAI!S (Rand Analytic Models of Support).
In this report, the author refers : the entire generic class of modcls
as Dyna-METRIC.
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SUMMARY

This report describes the Dyna-METRIC mathematical model for

relating aircraft spare-parts supply leve1 s and maintenance capability

to material readiness of aircraft. A key characteristic of the model is

its ability to deal with the dynamic or transient demands placed on

component repair and inventory support caused by time variables in a

scenario that includes sortie rates, mission changes, phased arrival of

component repair resources, interruptions of transportation, and the

like.

This has been accomplished by implementing a set of analytic

mathematical equations describing the dynamic behavior of the component

repair queueing system. The set also includes mathematical models of

components and subcomponents (indentures) and multiple echelons of

repair capability. From these equations the model can compute time-

dependent inventory levels (spare parts requirements) and assess time-

dependent mission readiness of the aircraft supported.

The text develops and describes the mathematical features of the

model, providing insight into both its capabilities and the inherent

assumptions.
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I. INTRODUCTION

Congress, the Department of Defense, and the services have each

recognized the importance of being able to relate logistics resources

and policies to readiness.[l] They have also recognized the difficulty

of establishing that relationship. For example, the House Armed

Services Committee Readiness Panel reports (1980) that "Current DOD

readiness data and reports are not particularly helpful' to relating

resources to future readiness " The DOD Material Readiness Report

(GAO, 1980) states,

The Department of Defense (DOD) spends billions each year to
maintain the readiness of its weapon systems but cannot
accurately project how much readiness a dollar will buy or
determine how much readiness is needed. . . . To date, DOD
has made little progress in linking funding and material
readiness and has not achieved an adequate material readiness
report for the Congress. Its officials told GAO that the size
and complexity of the problem has seriously hampered their
attempts.

In describing the difficulty of measuring readiness, Charles W.

Groover, Deputy Assistant Secretary of Defense (Program Integration)

MRA&L, states that a major difficulty in managing readiness is, "the

absence of analytical links between resources and readiness. We believe

we have a pretty fair understanding of how the logistics system operates

to support our combat weapon systems and equipment. . . . However, the

specific functional relationships between resources applied and material

[I1 Readiness is defined as the state of availability and
preparedness of resources with respect to their planned wartime mission.
It differs from capability, a measure of the comparative effectiveness
of different resources for accomplishing the same mission, and from
effectiveness, which relates capability to its application against enemy
forces.
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readiness resulting is incredibly complicated." (Groover, 1977) The

Air Force, in its Logistics Long Range Planning Guide (USAF, 1981),

states that a major objective is to "develop a means to better identify

and assess logistics requirements and capability, especially as these

relate to execution of U.S. contingency plans."

Currently, readiness reporting by the services consists of rating

the readiness of the separate groups of resources necessary to support a

combat unit: supply, fuel, munitions, aircraft, operational personnel,

maintenance personnel,' etc. The group with the lowest rating defines

the overall unit readiness. Unfortunately, the measures used for the

different resources are not comparable and do not equally reflect the

ability of the organization to perform its combat mission. For example,

the supply system is measured by its ability to satisfy demands for

spare parts, while pilots are measured by the number who are proficient

and mission-ready. To achieve a balanced state of readiness, the

services need techniques for describing readiness that use consistent

measures and consider the interactions among resources.

The Dyna-METRIC model was developed to study and predict the

readiness of groups of aircraft squadrons as determined by a major
V

subset of logistics resources, namely, those associated with component

repair and resupply. Thus, it attempts to solve two of the problems

mentioned above: combining the influence of several types of support

resources, and measuring their direct effect on mission readiness.

Figure 1 illustrates the flow of aircraft components from the aircraft

to various repair facilities to on-hand inventory, and from this

inventory to the aircraft. The net objective of this system is to avoid

the loss of aircraft mission capability due to shortages of correctly
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functioning components on the aircraft. Clearly, this objective can be

met only if the local supply of those components exceeds the number of

components tied up in various phases of repair or shipment. A snapshot

in time would show some components awaiting repair, some being repaired,

some in operable condition in inventory, some on the way to and from

another echelon of repair, and some partially repaired but awaiting

spare parts. Each of these states is a "pipeline" that contains some of

the total inventory of components. When there are not enough spare

components to cover each of these pipelines, "holes" will appear in

aircraft; these "holes" may or may not affect the ability of the

aircraft to perform a mission, depending on the mission essentiality of

the missing component. The set ot resources considered in Dyna-METRIC

includes the supply of spare aircraft components at bases and higher

echelons, transportation resources, and the personnel and equipment used

to perform repairs. The model links these resources to the unit's

sortie capability. (Actually, transportation is represented by delays

and interruptions, and personnel and equipment are represented by repair

times and capacities of the repair process.)

The readiness of a unit to perform its mission depends on the

availability of resources to support a highly dynamic flying program in

the face of delays and interruptions of logistics support. Current

methods for calculating required amounts of resources (such as spare

parts and munitions) use "steady state" or time-averaging techniques

that do not account explicitly for surges in sortie demands or

variations in logistics support. Muckstadt (1980) has shown that spare-

parts levels determined with such techniques can seriously understate

the requirements during peak periods of activity. Berman, Lippiatt, and

w
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Fig. 1 -- Component repair and the readiness assessment problem

Sims (1978) have shown that logistics strategies (prepositioning spare

engines, etc.) that are not apparent in the steady-state methods become

more obvious when time dependence is considered explicitly. A key

characteristic of the Dyna-METRIC model is its ability to deal directly

with the transient demands placed on component repair and inventory

support caused by dynamic parameters in a scenario (sortie rates,

mission changes, phased arrival of component repair resources,

interruptions of transportation, etc.). It does this by implementing a

set of analytical mathematical equations describing the dynamic behavior

of the component repair queueing systems, hence the term "Dyna" in the

Ui
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title of the model. It also includes mathematical models of components

and subcomponents (indentures) and multiple echelons of repair

capability. From these equations, it can compute time-dependent

inventory levels (spare parts requirements) and assess the missionIV

readiness of the aircraft supported. For these reasons, we borrowed the

name METRIC from Sherbrooke (1968); this is an acronym for Multi-Echelon

Technique for Recoverable Item Control, a mathematical model used to

compute optimal inventory requirements for steady-state activity levels.

Hillestad and Carrillo (1980) give the theoretical development of

the dynamic queueing equations that form the heart of Dyna-METRIC, as

well as certain performance calculations related to component repair.

This report reviews those results and describes how multiple echelons,

multiple indentures, and requirements optimization can be incorporated

in a dynamic model of logistics support. In describing the various

aspects of the model below, we frequently state the classical steady-

state approach prior to giving the time-dependent result; we do so to

illustrate differences in the approaches. The implementation of

Dyna-METRIC is described by Pyles et al. (1982).

Section II reviews the time-dependent pipeline equations. Section

III describes time-dependent stockage and component-repair measures of

performance. Section IV combines these measures to give aircraft

capability measures. Section V introduces the pipeline model for

indentured components, while Section VI describes the pipeline equations

for the time-dependent, multiple-echelon model. Section VII describes

the optimization techniques for supply requirements, and Section VIII

describes the approach for limited service facilities.
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The reader should be aware that Dyna-METRIC embodies many inherent

assumptions regarding probability distributions, independence of

variables, failure and repair of components, and allocation of

shortages. Rather than list them out of context and without evaluative

statements, we discuss the assumptions in the development of the model

in the following sections.

U

U
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II. TIME-DEPENDENT PIPELINES AND PROBABILITY DISTRIBUTIONS

Classical steady-state inventory theory provides a model that

describes how many components will be in the various pipelines of a

component-repair/inventory process when the component failure rates are

driven by a probability distribution that is not time-dependent (that

is, one that is stationary). Consider the case of a single type of com-

ponent with an average daily failure rate, 3, and an average repair

time, T. Steady-state theory (Palm, 1938), shows that, under the

assumptions that the probability distribution of repair time is indepen-

dent of the failure process, and that ample service capacity exists,[ll

the average number of components in the repair pipeline will be[2]

X =d T (1)ss

Generally, aircraft components are assumed to fail at a rate based on

160 the number of flying hours so that we can break d, the average daily

demand rate, into its constituents:

d= (average failures per flying hour) x (flying hours/
sortie) x (average number of sorties per day per
aircraft) x (number of aircraft) x (quantity of the (2)
components on the aircraft) x (percentage of air-
craft with the component)

[1] The assumption of ample service capacity implies that no com-
ponent awaits service and prevents the steady-state queue from becoming
unbounded. The effect of limited service capacity is discussed further
in Sec. VIII.

[2] The reader should be aware that we have changed the usual mean-
, ing of X in Little's Theorem, which states the same result as L =W.

Thus L = ss' X = W = T.
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With the further assumption that d has a Poisson probability distribu-

tion the average number of components in the steady-state pipeline, Xss ,

actually represents the mean value of a Poisson distribution as well.

By Palm's Theorem, the probability that there are k components in the

pipeline at any point in time is given by

k -X
. e ss

P(k in pipeline) ss (3)

The Poisson distribution arises when the mean time (in flying hours)

between failure of components follows an exponential probability distri-

bution, and is frequently borne out in data analysis of failure rates.

There are also strong theoretical reasons to expect Poisson failures.[31

Time-dependent flying scenarios cannot be considered correctly with

this approach. It is necessary to use the average number of aircraft

and average number of sorties per day per aircraft rather than the

time-dependent values. In addition, time-dependent repair capability

cannot be considered because the average repair time, T, must be used in

the steady-state model.

The dynamic model used in Dyna-METRIC relieves these assumptions.

In this case we let the daily demand rate, d(t), be a function of time

so that

d(t) = (failures per flying hour) x (flying hours/sortie at
time t) x (number of sorties per day per aircraft at
time t) x (number of aircraft at time t) x (quantity (4)
of the component on the aircraft) x (percentage of
aircraft with the component)

[31 See, e.g., Samuel Karlin and H. M. Taylor, A First Course in
Stochastic Processes, 2d ed., Academic Press, New York, 1975, pp. 221-
228.
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This expression for d(t) includes severil variables that might be

expected to change. For example, the numfer of aircraft can change in

time according to the time sequence of deployment or because of aircraft

attrition. The number of sorties per day per aircraft changes as a

result of programmed changes in flying rates, and the flying hours per

sortie change as missions change.

In place of a constant average repair time, T, the dynamic model

uses the probability that a component entering repair at time s is still

in repair at time t. This probability function, f(t,s), is called the

repair function. It is defined by

=Component entering at s is}
(t,s) = Prob [still in repair at t

=Repair time > t-s when 1
Prob {started at s

A few illustrations will show that this function is relatively sim-

ple to obtain for most uses, but also has considerable power to

represent certain time dependencies in component repair. (It is assumed

to be independent of the failure process, however.)

i. Constant or fixed repair time, T.

1i if t - s < T

F(t,s) t (5)

(That is, if the time between component arrival, s, for repair
and the current time, t, is less than the constant repair time,
T, then the probability that it will still be in repair is 1;
otherwise it is 0).



-10-

ii. Exponentially distributed repair time with average T.

t-s
F(t,s) - e T (6)

iii. No repair capability until time, T, with exponentially dis-
tributed repair time after T.

t-T

'1 if <T

F(t,s) - e T if s < T < t (7)

t-S

e T ifT < s< t

iv. Fixed transportation lag, S, with exponentially distributed
repair time after transportation occurs.

1 if t- s<S

F(t,s) - (8)
t-(s+S)

e T if t - S> S

v. Exponentially distributed repair time which changes at
time, T, (from T to T2 average repair time)

t-S

U - "if t <T

t-T _T-8

-F(ts) e e if s < T < t (9)

t- S

2 if T < 8 < t



Of course, many other repair functions could be modeled provided they

are independent of the demand function. Section VIII shows how depen-

dent repair functions may be approximated. We will now describe how

Dyna-METRIC combines the repair and demand functions to determine the

average number of parts in the pipeline. Consider only those components

that arrived in an interval of time, As, centered at time s. The number

expected in the repair pipeline at time t will then be given by

AX(t,s) - d(s) x F(t,s) x As (10)

where AX(t,s) = expected number of components in the repair pipeline
, at time t that arrived during the interval around s;

d(s) = daily failure rate at time s;

F(t,s) = probability of component not out of repair by time t; and

As = interval of time centered at s.

If we assume that the number of failures arriving in the interval As is

independent of the number of failures arriving in similar intervals cen-

tered at other times other than s[4] and that the repair probability

function is independent of the probability distribution generating the

demand rate, we can sum the contributions of all intervals to obtain

[4] This is called the independent increment assumption and is true
for d~mands governed by a Poisson process. Actually, there are reasons
that component repair demands may not have independent increments. If
aircraft are decreasing in availability because of component failures
and there is a resulting decrease in sorties flown, then the later sor-
ties (and hence component failures) are a function of previous component
removals. This will cause the result above to be an overstatement of
the number of components in the pipeline. For most users of Dyna-METRIC
this will not seriously affect the answer; but for some cases with seri-
ous shortages of supply resources, a second iteration with reduced sor-
ties based on the previous iteration will give a more accurate answer.
Generally, the overstatement of pipelines that may occur will give con-
servative answers to stockage requirements and to capability with a
fixed level of stock.

Uf
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X(t) - E A(t,s)
s<t

(11)

d(s) • F(t,s)As
s<t

If we make ds arbitrarily small, we arrive at the integral expression

for X(t).

t

X(t) f f d(s)(ts)ds (12)

0

This integral represents the average number of components in the repair

pipeline at time t. Hillestad and Carrillo (1980) show that, with the

additional assumption that the component failure probability distribu-

tion is Poisson, X(t) is the mean of a nonhomogeneous (time varying)

Poisson process. That is, the probability of k components in repair at

time t is

e -

P(k) X(t) e- (13)

where

S

X(t) ] f d(s)F(s,t)ds . (14)

0

The integration from 0 to t assumes no flying before 0 (or at least

F(s,t) = 0 for s < 0). Superposition allows consideration of flying
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during this period. Peacetime or steady-state pipeline quantity preced-

ing t = 0 can be considered by computing X(O) • F(t,O), the quantity

of the pipeline remaining at time t. Under other assumptions it is pos-

sible for X(t) to represent the mean value of other probability distri-

butions. Compound Poisson distributions also satisfy the independent

increment assumption and lead to pipeline distributions such as the

negative binomial distribution given by

k

P(k) = (r +k- 1)! ._ (15)(r - I) !k! r+k
q

where q = variance to mean ration (q > 1)

r (t) (16)q -1

p = q- 1 (17)

and X(t) is given by the equation shown above. This distribution can

arise when groups of failures occur at instants of time (e.g., due to

the arrival of groups of aircraft) and the number of instants of failure
W

(number of batches of failures) in a given time interval is governed by

a nonhomogeneous Poisson distribution. When the distribution of the

number of failures in any group (at any instant of time) is given by a

logarithmic distribution, the resulting distribution of the pipeline's

quantity is negative binomial. (The Poisson distribution allows only

one failure at each instant.) The additional information necessary to

use this distribution is q, the variance-to-mean ratio. This must be

determined by statistical estimation of the variance of historical
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failure data. (The Poisson distribution has a variance-to-mean ratio of

1 and does not need this variable.)

An important aspect of estimating pipeline quantities is the abil-

ity to separate pipelines with dissimilar demand rates and repair func-

tions for ease of calculation, and then to sum the result to obtain the

average total quantity of components tied up in all of the pipelines.

This is easiest when the components flowing into each pipeline arise

from a common source distribution. For example, suppose that demands

for component repairs arise at an aircraft squadron based on the flying

activity of the squadron, and that there is a probability p that a

failed component can be fixed locally and 1 - p that it must be shipped

elsewhere to be repaired. Further, assume that the local repair has

probability function F1 (s,t) and that remote repair has probability

function F2 (s,t) (including transportation time). Then we have that

t

X d(s)[P (s,t) + (1 - p)F2 (s,t)]ds (18)

0

or that

t

Xl(t) = f d(s)pF 1 (s,t)ds (19)

0

t
X 2(t) f d(s)(l p)F 2 (,t)ds (20)

0

X(t) X 1l(t) + X 2(t (21)
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Thus, it is possible to separate and recombine the average values for

the various component repair pipelines in the dynamic model just as in

the steady-state model. This is true regardless of the probability dis-

tributions of different parts of the pipeline. However, when the dis-

tributions are of different form or have differing variance-to-mean

ratios, the resulting total distributions car be complicated. When the

distributions in each pipeline are independent, we can determine the

resulting distribution by the more complex process of convolution.

This section will conclude witn an illustration of the dynamic

pipeline calculation and time-dependent probabilities. Consider an air-

craft squadron at a single location with:

N (s) E aircraft at time s,

D(s) : sorties per aircraft demanded at time s, and

FH(s) R flying hours per sortie at time s.

A component on the aircraft has the following characteristics:

m failures rer flying hour;

q quantity per aircraft.

The demand function for this squadron for this component is then:

d(s) - N (s) a D(s) . FH(s) . m . q (22)a

Each failure of the component has a probability, p, of being repaired

locally and 1 - p of being repaired remotely. If it is repaired

W locally, then it can be repaired in an exponentially distributed time

with mean Ti except for the first TR days during which no repair capa-

W
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bility exists. If it is repaired remotely, an order is placed for a new

component, which is immediately shipped and arrives after a fixed tran-

sportation delay T2 . The number of aircraft and flying hours per sortie

will be assumed constant in this example so that NA(s) = Na and FH(s)

FH.

The demanded flying program will have one step at time zero to D1

sorties per day, and a second step to a lower number of sorties D2 per

1 2 2
day at xD" (We will assume that TD > TR' that T > T , and that T >

D . ) The pipeline integral for the component is then

t

X(t) d(s)[pFl(st) + (1 - p)F2(st)]ds , (23)

where

d(s) (24)
N D 2  •H m •q =d 2  S > T D

where

I ~ t < TR

I t-TR

F (s,t) e 1  B<TR < t (25)

t-S <  <

TRB~
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(1 if t -8s<T2

F (S't) =(26)

0o if t - s>T2

Let X 1 (t) be the average local repair pipeline quantity at time t, and

let X t) be the average remote repair pipeline at time t. Then,

x Mt f d(s) pF (s,t)ds (27)

0

and

2 -2
x Mt f d(s)(l O pF (s,t)ds .(28)

0
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These integrals further separate into

I "1 0 d l p  d s t < T0t

TR t-R

f d1  p e T1  ds

+f dlp e- T d s  TR < t < rD

"R

X(t) = <R(29)

f d 1  p e T1  do

TD

t-+ f dlp e- T I1 ds

TD
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pt

f dl(1 - p)ds t < 'D

U0

TD t

f d(l- p)ds + d2 (l p)ds TD t < T2

I0

TD

t d(l -p)ds

~tT2

x2(t M (30)

T z2

+ d2(l- p)ds

"D

t

+f2 2(-p)ds T2 < t < TD + T2

+I 2 ( d2pP)d S D-t

T2

ft d2 (1 - p)ds T D + T 2 < t

t-T 
2

Performing the integration we obtain the average pipeline quantities

given by
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d . p t t < tpR

d p T R e TI + dip T( 1 e Ti) T R t < TD

x = (31)

tTR 1 t-D tT

dip TR e T1 + dip T T - e T

t-T

+ d 2 pTl - e T TD t

and

di(1 - p)t t < TD

d (I - P)TD + d ( - p)(t - TD) r D t < T2

x2( 2 d(1 p)(T D  t + T2 (32)

+ d2(1 p)(t T D) T2 < t < T T 2

d2 ( - p)T 2 T D + T2 < t
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Figure 2 illustrates these results.

X1 (t)+X 2 (t) -

(average total pipeline)

EI

N2 D2 FHmq (1- p) T 2

/ (average local N
/I repair pipeline) \

I" d 2 pT 1 = Na D 2 FHmqpT 1

f X2 (t)

(average remote repair pipeline)

7 0 T R  TD T 2  TD+T 2 t

Fig. 2-Illustration of average pipeline calculations

* The addition of the probability distribution allows us to determine

the probability of various pipeline quantities. For example, if the

demand distribution is Poisson, the pipeline distribution will be Pois-

son, as described earlier. We can determine, for this example, the pro-

bability that no more than K components will be in the local repair

pipeline using the following calculations:

K (t) X It)

p(no. in local pipeline < K) - k (33)
k-0

L
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This is illustrated in Fig. 3.

Y-

1.0

Note that there are two scale$

0.75 P(number in local pipeline S K 1)

• . K -- 0.5 -

Z Co

0.25J 
(average number in local pipeline)

- 0.

0

0 TR TD T 2t

Fig. 3-The probability that no more than K components are in local repair

Another important use of the probability distribution is to deter-

mine confidence intervals. Suppose, in the example, we wish to deter-

mine the number of components in local repair that we are quite sure

will not be exceeded. We might quantify this by looking for the number

that will not be exceeded with 90 percent probability. That is, we

desire 90 percent confidence (or .9 probability) that the number will

not be exceeded.

Let L(t) be the number of components that satisfies this confi-

dence. The value of L(t) can be determined by summing the Poisson terms

until they equal or exceed .9 at each time instant of interest. Thus,
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we find L(t) by solving the following equation for the smallest value of

L(t):

L(t) X1(t) ke-Xl(t)
.9- = E.k

k=O

This is illlstrated in Fig. 4.

qA

I'

11 L t) = Number which is not exceeded
I \with 90% confidence

E

0

z I X (t) (average number of
I components in

local pipeline)

W

T2  t

Fig. 4-111ustration of confidence level

W

WW
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III. TIME-DEPENDENT COMPONENT PERFORMANCE MEASURES

Section II described the calculation of time-dependent average com-

ponent pipeline quantities and their associated probability distribu-

tions. Combining these pipeline quantities with the supply levels at

the same instant of time allows the determination of various measures

describing the availability or shortages of individual components at the

aircraft. These are the supply or component-repair measures used by the

services to describe supply system performance, except that in this case

time dependence is included. They are also similar to the measures used

by the services to determine the required spare-parts levels. These

measures do not completely describe aircraft mission readiness, since

they do not describe the combined loss of capability that shortages of

groups of components inflict on the aircraft when cannibalization (con-

solidation of shortages) and mission essentiality are considered. They

do form a basis for higher-level measures, and they are also useful in

identifying problem components once overall system performance has been

determined to be inadequate. The next section will deal with the joint

effect of the components.

The component performance measures are determined for a given sup-

ply level, S(t). This level is provided to protect the aircraft squad-

ron from shortages due to components in repair or on order. When the

number of components in repair plus on order at time t exceeds S(t),

then the system is said to be in a "backorder" state. When components

are backordered, the aircraft will be missing components, possibly

degrading the mission or sortie capability.
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The component measures typically computed by the Dyna-METRIC model

are:

R(t) Ready rate at time t--the probability that an item
observed at time t has no backorders.

FR(t) Fill rate at time t--the probability that a demand
at time t can be filled immediately from stock on
hand.

EB(t) E Expected back orders--the average number of
shortages of a component at time t.

VBO(t) E Variance of the backorders, a measure of the
random variation of backorders.

DT(t) F Average cumulative demands by time t.

The last measure is derived from the daily demand rate, d(s), as:

t

DT(t) f d(s)ds (1)

0

The remaining measures use the average pipeline quantity, X(t), the

stock level, S(t), and the probability distribution P(k/X(t))[l] chosen

from the Poisson distribution (variance-to-mean ratio = 1.0) or the

negative binomial (variance-to-mean ratio > 1.0) distribution.

The read) rate is given by

S(t)

R(t) = k P(k/X(t)) (2)

[I] The notation P(k/X(t)) is introduced here to indicate the time
dependence and mean of the probability distribution. It is, however,
the same probability as described by P(k) in Sec. II.

qI
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The interpretation of this expression is as follows: P(k/X(t)) is the

probability of there being exactly k components in the pipeline when the

average number is X(t). P(O/X(t)) is the probability of zero in the

pipeline. The sum of P(O/X(t)), P(i/X(t)), ..., up to P(S/X(t)) is the

probability that S or fewer components will be in the pipeline. This is

the probability that the pipeline will contain no more than the stock

level and is therefore the probability that there will be no backorders.

The fill rate is given by

s(t)-l

FR(t) = k-0 P(k/X(t)) (3)

The interpretation of this expression is as follows: The fill rate is

the probability that a component will be available when a demand is

placed. It is therefore the probability that demands have left at least

I component available and is therefore the sum of the probabilities of

demands less than the stock level.

Expected backorders are given by

E EB(t) - F (k - S(t) P(k/X(t))
k-S(t)+l

(4)
S t)

- A(t) - S(t) + SJ (S(t) - k) P(k/X(t))
k=O

The interpretation of the first expression is as follows: There are no

backorders if stock equals or exceeds the demand. Therefore, for k less

than or equal to S(t), the backorders are zero. For k greater than

S(t), the backorders are merely (k - S(t)). The probability of any
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demand level, k, is P(k/X(t)), and the expected value of the backorders

is merely the product of the various values the backorders can take on

times the probability of a demand at that given value. The second

expression for the expected value is more useful computationally; it is

obtained by using the facts that

kP(k/X(t)) - X(t) and (5)
k=O

E S(t)P(k/A(t)) = S(t) • (6)
k-O

The variance in backorders is given by

VB(t) - , [k - S(t)] 2 P(k/A(t)) - [EB(t)] 2  (7)
k=S(t)+l

For the Poisson Distribution this is given also by the computationally

tractable expression,

VB(t) - X(t) + [L(t) - S(t)] 2 _[EB(t)]
2

(8)

S42

S ) [k - S(t)]2 P(klX(t))
k=O
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This expression was derived using the previous results and the fact

that, for the Poisson distribution,

m (k - X(t)) 2 P(k/X(t)) = X(t) .(9)

k=O

These measures can be computed for each component for each location

and time of interest. They provide a detailed picture of the

component's status. Figure 5 illustrates the component measures for a

case in which the average pipeline quantity undergoes a buildup in time.

-

I
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E

0 Stock level (S(t))Avrgppene(t)

z

Time

1.0

Red.rt (0)

0

Time

Fig. S--Illustration of component measures
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IV. TIME-DEPENDENT SYSTEM PERFORMANCE MEASURES

Dyna-METRIC also forecasts the effect of component shortages (due

to shortage of spares, inadequate component-repair capability, etc.) on

the number of mission-capable aircraft and consequent ability to gen-

erate missions. These measures show the combined effect of the com-

ponent shortages on aircraft availability, both with and without "canni-
I'

balization" to minimize the number of aircraft with "holes." Under can-

nibalization, the model assumes the ability to instantly consolidate

shortages onto the smallest number of airframes. In actuality this

would be done only when the aircraft are needed. Thus, this measure may

overstate the number of aircraft that might be available in unstressed

conditions (when all aircraft are not needed). On the other hand, the

measures for conditions of no cannibalization may understate aircraft

availability, because some cannibalization almost always occurs in prac-

tice. The true answer probably lies somewhere in between these bounds,

closer to the full cannibalization values in stressful conditions and

closer to the no-cannibalization numbers under less stressful condi-

tions. The average total number of backorders is a useful system meas-

ure that describes the total number of holes in aircraft.

Mission essentiality of components can be accommodated by sets of

indicators for each component showing whether or not the component is

required for a given, finite set of missions. Shortages of components

that are not considered mission-essential at a point in time are then

not included in determining the aircraft performance measures.

w
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The following set of system performance measure equations is

repeated from Hillestad and Carrillo (1980):

1. Average number of systems NMC (not mission capable) without

cannibalization, EN(t).

This measure gives the average combined effect of recoverable item

shortages on the aircraft that those items support. Given that NA(t)

represents the number of aircraft that are supported at time t, and that

there are N types of recoverable items required on each aircraft, assume

that the shortages of any one of these items will make the system nono-

perational. Also, assume-that shortages of components cannot be conso-

lidated among the systems.

The probability that an arbitrary aircraft is missing component

type i when there are k shortages of i across the fleet of NA(t) air-

craft is[l]

k
NA(t)

and therefore, the probability that an arbitrary aircraft has a shortage

of item i is given by summing across the possible values of k = £ - s.(t)
1

times the probability they occur:

W
- si(t)) EBi(t)

NA(t) P(£/xi(t)) = NA(t) , (2)£LMS i(t)+l

where EBi(t) is the expected backorders on component i. Assuming that

failures are independent, the probability that an aircraft is non-

mission-capable due to shortages of some item is

I - 1( -NA(t))

[1] This assumes that there is at most 1 of each component of type
i on any aircraft. The modification for multiple occurrences on an air-
craft will be discussed shortly.
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And, finally, the expected number of non-mission-capable aircraft at

time t is

EN(t) = NA(t) 1 - ( NA(t) (4)

This derivation required the assumption that only one component of a

given type was on each aircraft. If this is not the case, let Qi be the

quantity of item i per system. If no consolidation of shortages occurs,

then

EN(t) = NA(t) I - Pr (acft have no shortages of i)

NANt) / - P Pr (acft have no shortages of i when

i=l y=O y shortages of part i exist in theI
squadron)

(5)

S0=1(Qi. NA(t))

i=1 Y=OQi

where PBi(y) is the probability that item i has y shortages at time t

(the probability distribution of backorders of component i).

Si(t)

E P(k/Xl (t)) y = 0
k-0

PBI(y) (6)

P(k + S(t)/Xi(t)) y > 0

U . . . . i . .
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2. Average number of aircraft NMC (non-mission-capable) with an

instantaneous cannibalization policy, EN (t).

In this measure it is assumed that shortages of all components are

consolidated to make the smallest number of aircraft non-mission-

capable. Let Pi(j) be the probability that shortages of the ith item

are less than or equal to j. Then

Si(t)+i
pi(J) = P(k/Xi M))- (7)

k=0

Let P(j) be the probability that the number of non-mission-capable air-

craft is less than or equal to j. Then

N
P(J) = II p(j) (8)

If there is more than one item of a type on each aircraft, we again

employ Qi as the number of item i per aircraft and obtain

N
P(J) = II P (Qi  J) (9)

1=1

This measure is important by itself as well as being a step toward

obtaining the average number of NMC aircraft undel full cannibalization.

It is used as a performance constraint equation in the optimization pro-

cedure in Sec. VIII. Ebeling (1978) refers to this distribution as the

"Operational Ready Rate," and argues that it is the most operationally
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oriented performance measure among those commonly considered for a

spare-parts objective function.

The expected number of NMC aircraft with full cannibalization is

then (using the fact that the expected value of a nonnegative distribu-

tion is equal to the sum of the complement of that distribution):

NA -1

EN (t) = [ 1 - P(J)] (10)E~c J=6

The NMC distribution function with full cannibalization is

PNj(t) = POJ) - PO - 1) (l1)

which then can be used to give the variance in the number of NMC air-

craft,

VN(t) = [2 PN (t EN2(M (12)

3. Total expected backorders.

This measure is the sum of the individual component backorders,

BO i(t). Thus,

N
EB(t) - Z EBi(t) (13)

1-1

!q

q_
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This is commonly used as an optimization objective or constraint in

* determining supply levels. It is a very conservative estimate of opera-

tional performance, as can be seen by expanding the expected NMC expres-

sion with no cannibalization and assuming Q. = 1 for all i.

Et) NA(t) ( N EBi(t) N-1 N EB1 (t) ____(t_..

EN(t) = NA-t) I ) + "NA(t) NA(t)I i~li=l J-i+l

(14)

when EB1(0 << 1.0 , (15)
NA(t)

when

N
EN(t) EB1 (t) = EB(t) (16)

Thus, if Q. = 1 for all components and Ei(t) is very small (relative to

the number of aircraft) for each component, then EB(t) is an approxima-

tion to the expected number of non-mission-capable airc-aft with no can-

nibalization and will always overstate EN(t).

4. NMC with partial cannibalization.

Here we assume that some components are relatively easy to canni-

balize, and that some are so difficult to remove or install that it is

not desirable to cannibalize them. Let

Ic ( iI component i is cannibalizable )

in( ij component i is not cannibalizable }
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We first compute the probability of exactly k NMC aircraft due to items

in the set I • This is merely the PN.(t) derived earlier using P(j),c J

where P(j) is computed using the i in I . We will denote this probabil-

ity PNc(t). The probability that an arbitrary aircraft is nonopera-

tional, considering only shortages of cannibalizable items, is then

N 0 ~PN (t) = EN C(t) 
(7

J=i NA(t) j NA(t)

The probability that an arbitrary system is operational after shortages

of noncannibalizable components only is

EB (t)
II (1 -A ) (18)

assuming that Qi, the quantity of item i per system, is one for each

part, i, in the set I . The probability that an arbitrary aircraft is' n

* not operational, assuming independence of demands and that the cannibal-

ization of the items in I takes place with no information of the failedc

items belonging to I , is

ENc(t) j E!(1 - A-(t)- ;19

1 -I NA(t) I Nn
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and the expected number of nonoperational aircraft, given partial canni-

balization and given NA(t), total aircraft, is

EN (t) = NA(t) 1
- NA~t) AI (t) (20)

ENP(t) is an overestimation of the expected NMC if information describ-

ing which noncannibalizable items had failed is used (since, in this

* case, the strategy might be to move "holes" due to cannibalizable items

to those aircraft with holes due to noncannibalizable items. This was

not considered in the derivation).

*- 5. Probability of meeting aircraft missions.

This performance measure is for the situation in which it is desir-

able to have enough operational aircraft to perform a certain demanded

level of activity. Let B(t) be the maximum number of allowable NMC air-

craft that still permits the missions to be met, and let D(t) be the

number of missions at time t. Let r(t) be the maximum number of sorties

per unit time achievable by a single mission-capable aircraft. Note

that

B(t) = NA(t) - D(t) (21)
r(t) (21

where [x] is the ceiling of x, that is, the smallest integer so that

Ix] x, and D(t) r(t). NA(t) is assumed to be an integer. The probabil-

W ity of meeting mission demands is then PD(t) = P(j) (given earlier)

. ... . ... .
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where j B(t). That is, the probability that mission demands are met

is simply the probability that the number of nonoperational aircraft is

less than or equal to B(L).

6. The expected number of mission demands met, given k non-

mission-capable aircraft is

D(t) if k < B(t)

E[S(t)/k] = (22)

r(t)(NA(t) - k) if k > B(t)

Unconditioning by multiplying by the probability of k non-mission-

capable aircraft (described in the previous paragraphs), we obtain

NA(t)

ES(t) - D(t)P(B(t)) + a r(t)(NA(t) - k)PNk(t) , (23)

k=B(t)+l

where P(B(t)) P(j), j = B(t), and PN k(t) were described in paragraph 2

above.

7. The probability distribution of the number of mission demands

met.

This is given by

t(B(t)) if k - D(t)

PS k(t) - PNM(t) if k - r(t)(NA(t) - J); (24)

j - B(t) + 1, ... , NA(t)

0 otherwise
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and allows the variance in mission demands to be determined from

NA(t)
VS(t) = D2(t)P(B(t)) + 2 (r(t)(NA(t) - k)) 2pNk(t) - ES2(t) •

k=B(t)+l (25)

Note that the mission-related measures bring into play, in a determinis-

tic sense, additional time-varying parameters such as the number of air-

craft, NA(t), the demands on all systems, D(t), and the portion of

demand a single aircraft can satisfy, r(t). In the deployment of an

* aircraft squadron, NA(t) might represent a time-phased deployment of the

aircraft as well as attrition due to losses in a conflict. The demand

D(t) would be the time-dependent demand for sorties as an engagement

proceeds, and r(t) would be time-varying because of a short-term capa-

bility to provide surges of flying activity.

Y -
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V. AN INDENTURE MODEL FOR TIME-DEPENDENT PIPELINES

Aircraft components are classified in terms of major assemblies,

V which fit directly on the aircraft, and subassemblies, which fit on

other assemblies. In the Air Force the major assemblies are called Line

Replaceable Units or LRUs, and the subassemblies are called Shop

Replaceable Units (SRUs). Further breakdowns of the assemblies are usu-

ally possible; in some cases this breakdown, or indenturing, goes

through five or more levels. Assemblies and their subassemblies

g ("Assembly" and "component" will be used interchangeably in this sec-

tion) affect the parent aircraft in different ways. A shortage of an

assembly will cause a hole in an aircraft. A shortage of a subassembly

will cause a hole in an assembly, which may or may not cause a shortage

of the assembly and a consequent aircraft hole. Thus, in terms of

effect on system performance and in terms of spare parts, subassemblies

and their parent assemblies should be treated differently.

THE CLASSICAL STEADY-STATE METHOD

The classical method of treating subassemblies (see, e.g., Muck-

stadt, 1973) is based on a number of steady-state assumptions that do

not hold true for the time-dependent case. To explain the dynamic model

it will be useful to first derive the steady-state model and illustrateS

these assumptions. Let d. be the demands per unit of time for subcom-J

ponent j when component i is repaired. Let EB. be the expected back-J

orders for component j and let d. be the demands for repair of component i
p 1
per unit of time. The average repair time for component i is assumed to

w -- m m ' m ,
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be T.. The first step in the classical approach is to determine the

average waiting time for subcomponent j, given that it is needed in the

repair of i. This is given by classical queueing theory as

EB.

W d t3 idj

EB. represents the average shortages of subassembly j that mustJ

be resupplied before new demands for j can be satisfied. In steady

state, the rate of demand fulfillment is equal to the rate of demand, so

that d. represents the average rate at which backorders for j are satis-J

fied. Then, EB./d1 gives the average time until the shortages areJ J

cleared, or until any new demand can be satisfied.

In the most commonly used approach, the conditional probability

that the assembly i requires subassembly j when it fails is approximated

by the relative demand rates for j and i,

i
d .

p -- 1 (2)
ij di

Under the assumption that subassembly failures are independent, the

expected time that assembly i will wait for all of its subassemblies is

EB.
P 3

Wij d i

subassemblies j i

I dEB (3)

subassemblies j
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This time is then added to the assembly repair time and multiplied by

the demand rate to give the average number of component i in repair plus

awaiting parts (AWP). That is,

Xi (in steady state) = di • (Ti + W )

= diT + > EB (4)

subassemblies j

Steady-state Sum of
pipeline subassembly
without AWP backorders

This result requires the assumption that the subcomponent failure sets

are nonintersecting (which really means that no more than one subcom-

ponent can fail or be demanded in the repair of each assembly). It also

requires the assumption that there is no cannibalization of subassem-

blies (which would minimize the number of components awaiting parts).

Finally, it assumes that a subcomponent does not appear on more than one

type of parent component.

THE MODEL FOR TIME-DEPENDENT PIPELINES

The approach used for dynamic systems is similar but relaxes some

of the previous assumptions. Let Ai(t) represent the number of com-

ponents of type i awaiting parts at time t, and let A.(t) represent the1

expected value of A.(t). The mean number of components in repair and1

awaiting parts is then[l]

= i(t) + Ai(t) (5)

[1] Let FA(t) represent the probability distribution of Al(t) and
F.(t) be the cumulative Poisson or negative binomial distribution1
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As wo have shown, in steady state Ai(t) A; it is often approxi-

mated by

A EB. (6)

Lall

subassemblies

In the Dyna-METRIC model, the determination of A.(t) depends on whether

the subassemblies are cannibalized or not.

Cannibalization with Joint Failures Allowed

When subassemblies are cannibalized, EB.i(t) is determined in a

manner similar to the t'reatment of aircraft cannibalization. Let Pj(k)

be the probability that shortages of the jth subassembly are less than

or. equal to k. Then

S t ) +k

Pi(k) -Probability of X. failures of j (7)

X0 from the Poisson or negative
bhinomial distributions

described earlier for these components in repair. When Fi(t) and F (t)

A i

are independent and both Poisson, or when they are both negative binomi-
al with the same variance-to-mean ratio, the distribution of the com-
ponents awaiting parts and in repair will be of the same form with the
mean i(t). Otherwise, when thedistributions have different forms,
convolutions between Fi(t) and Ft) must he performed. Although it is
likely that Fl(t) differs from FA(t) in distributional form, our experi-
ence has shown that the approximation of F (t) by a Poisson or negative
binomial distribution does not overly distort the results. We also note
that convolution to obtain the resulting distribution is usually avoided
in the steady-state calculations as well.
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Let Pi(k) be the probability that the number of nonoperational assem-

blies of type i (due to subassembly shortages) is less than or equal to

k. Then, since this probability is the same as the probability that all

subassemblies have ..hortages less than or equal to k,

Pi(k) = H PJ(k) (8)

subassemblies
j c i

The expected number of assemblies of type i that are unavailable due to

subassembly shortages is then found by summing the tail of this distri-

bution:

NA(t)'QI+Si(t)

Ai(t) = (I - P (k)) , (9)

k=0

wherp Q, E quantity of assembly i on an aircraft,
U

NA(t) E number of aircraft at time t, and

S.(t) 7 supply level for component i at time t.
1

The distribution of parts of type i awaiting subassemblies is

FA(t,k) = P (k) - P (k - I) (10)

A
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No Cannibalization with Joint Failures Allowed

An alternative form of EBi(t) is used when there is no cannibaliza-

tion of subcomponents. The equations are similar to those used for

determining the number of aircraft that are non-mission-capable under a

policy of no cannibalization. In this case,

EB ... (t)A (t) =(NA(t) • Qi + S Mt)" I - 1 NA.O--i+it . (1

subassemblies

When there is more than one subassembly of type j on assembly i, this

expected value takes on the more complicated form shown in Sec. IV. The

probability distribution of subassembly shortages in the no-

cannibalization case is not known although its moments can be obtained. S

It is expedient, although not precisely correct, to use the geometric

distribution with A.(t) as the mean.
1

Some Cautions and Comments on the Use of This Model

In the equations used for determining Xj(t), one must be careful to

avoid overdrawing the influence of shortages of those components. For S

example, when no repair capability exists for the parent assembly, there

can be no awaiting-parts quantity for that parent, even though there may

have been subassembly failures. In this case the demand for the

subassemblies should be deferred to the time at which repair occurs.

Thus, d.(t) represents the discovered failures instead of true failures
J

of the subcomponents. •
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Independence between subcomponent and parent failure distributions 71
has been a strong assumption in much of this derivation (as it is in the

steady-state case), even though most parent component failures are due

to problems with the subcomponents. Clearly, the number of discovered

subassembly failures cannot exceed the number of failures that exist on

assemblies that have entered repair. This requires conditioning the

distribution of the subassembly demands on the number of parent com-

ponents in the pipeline and determining the pipeline and AWP quantities

simultaneously. This means that the foregoing equations, which assumed

independence, will sometimes overstate the number of assemblies in the

AWP state with no cannibalization because the failed subassemblies are

allowed to be distributed over some non-failed assemblies. It also

means that the effects of subassembly cannibalization are sometimes

overstated, since the cannibalization is allowed to take place across a

wider range of assemblies than those that have failed. In general, how-

ever, the independence assumption leads to reasonable approximations

since the rate of each subassembly failure is usually considerably

smaller than the assembly failure rate (due to each assembly usually

having large numbers of subassemblies).

Shared Subassemblies

For simplicity, the development in this section was based on an

assumption that subassemblies do not fit on more than one type of

9 parent. This is not a necessary assumption and, when violated, it can

be dealt with by allocating the subassembly shortage distribution back

to the potential parents based on the quantity of each type of parent in
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the aircraft, Qi, the quantity of the subassembly in the aircraft, qj,

T
and the quantity of the subassembly on each parent, P... Let FA.(t,k)

ij J

be the total shortage distribution of subassembly j for the aircraft.

FAT (t,k) = Probability that there are exactly k shortages
- -3of component j at time t .

We assume here that the failure rate of j is not affected by which

assembly it is on, that shortages are allocated to assemblies based on

relative demand, that assembly i has P.. of j-type subcomponents, that1J

there are Qi of i-type components on the aircraft, and that there are Qj

of j-type components on the aircraft. Then the probability that there

will be k shortages on assembly i, when there are k (k 2 Z) total shor-

tages of subassembly j, is given by the hypergeometric distribution,

P2 (Q1  P i)( -Qi 1  P i)

(Q)=k

When the total shortages k are less than k, there is of course 0 proba-

bility of 1 shortages on assembly i. To illustrate this, assume Qi = Z'

P = 2, and Qj = 6. Then 2/6 of the subcomponents j lie on assembly i.

Given 4 shortages of j, the probabilities of 1 and 2 shortages on i are

1~) 4 8

P(1,4)6

(6) 15
(2 6 2
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The probability of £ shortages of j associated with i, FA.(t,k),

is removed from its dependence on the number of shortages of j by

summing across the possible values of k. That is,

( i Pi )~ * 
Qi

1. Q i k- / T
FA.i (t,k) E Q FA.i(t,k)

* In case only the expected value associated with FA (t,Z) is needed (as3

is the case in the no-cannibalization assumption), it is easy to show

that

A(t) = E(FA.(t,£) P EB(t)
Qj

Thus, the total expected shortages of j are allocated to assembly i

based on the number of subassemblies on i relative to the total of j on

the aircraft. The subcomponent shortage allocation described in the

above paragraph is performed before computing the effect of subcompo-

nent shortages on the parents under the cannibalization and no-

cannibalization assumptions. Therefore, there is an implicit assump-

tion of no cannibalization of subcomponents across unlike parents.

[-

U
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VI. A TIME-DEPENDENT PIPELINE MODEL FOR MULTIPLE

ECHELONS OF REPAIR

Component repair is performed at several levels within the Air

Force. Flight-line personnel remove and replace major assemblies.

Squadrons or bases repair these in the field if possible or ship them to

larger, centralized facilities serving several units. This section

describes a mathematical model for these various echelons of repair.

Except for time delays for transportation, the approach is very similar

to that used to model indentured components. As before, the commonly

used steady-state approach for multiple echelons is explained first, to

form a basis for understanding the time-dependent approach.

THE STEADY STATE MODEL

The decision to ship a component to another echelon is based on

policy (for example, perform no local repair on this component) or on

random chance (inability to repair certain types of failures locally).

In either case there is a decision to ship a component to another

echelon of repair. At the time a component is shipped, another is

ordered (usually from the same echelon). In a steady-state model, the

average rate of flow to the next echelon from a unit is equaled by the

average rate of flow back to the unit. Let this average flow for unit k
Fbe given by d Assume there is a transportation delay, Tk, for the

k'k

retrograde movement (to the higher echelon) and a transportation delay,

F
Tk, for forward shipments (from the higher echelon). The average
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repair time at the centralized facility is given by T. The average

number of components in repair or in transportation is then XRk given

by

x dk(TR + T) (1)
k kk

and the average number of components in shipment to the unit is Xk
F

k'

given by

F - TFx k k Tk (2)

Now, if there is only one unit supported by this higher echelon, the

steady-state model is quite simple. The average total pipeline for a

given component is simply the base repair pipeline for the component,

kB

k plus the above pipeline averages:

A B + xR + AF = xB + d (TR + T + T) (3)
kk k k k kk k

Given a total stock level for the two-echelon system, the various per-

formance measures such as backorders and fill rate can be easily com-

puted as shown earlier.
U

Frequently, the total system stock is segregated into a supply

level SR to support the retrograde and repair pipeline of the higher

echelon, and a supply level Sk to support the base repair and forward

sk
shipment time from the supporting facility. In this case a response

V
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delay, AS, is computed and added to the forward transportation time.

The response delay is approximated by computing the backorders in the

Rretrograde and repair pipeline when the supply level is S , These are

R Rdenoted EB(S ,X ). Under the continuing assumption that the system is

in steady state, these backorders or shortages (actually, inability to

respond to orders) are cleared at the rate d k The time to clear all of

them, and therefore the time delay in responding to a new order (since

the backorders represent orders already placed), is given by

EB(SRX)
As = k (4)d k

The forward pipeline is then increased by this time delay so that

F d (TF +Xk =d S

(5)

kTF + RXR)
-dKk +BSk)

It should be apparent that this separation of supply levels does

not give the same performance as that computed when we consider one

supply level for the entire system. That is,

x B R -FXk k + Xk +jkTk (6)

I

U
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with supply level S k + SR, is not the same as

B - F + (7

Ak + dkTk +EB(SR )(

with supply level Sk. In the first case, the retrograde and repair

stock can be used to support shortages at the base or in the retro-

grade pipeline, while the second model does not permit the retrograde

supply level to be used for base or unit support.

If only one base were supported, it would always make sense to

place all stock in the base or unit supply level Sk, since performance

is ultimately measured at the aircraft and not in the retrograde pipe-

line. When this is the case, the two models are the same, since

= B + dkTF + EB(O,XR
k k k

(8)
~B A +W,= Xk + dkT F+ xk R

k +kk k

When multiple units or locations are supported by higher-echelon

repair, it is necessary to consider the pipelines from each location

jointly unless there is ownership of specific components. Generally, we

assume that once components enter the higher echelon for repair they can

be given back to any location. It is difficult, however, to determine

performance of any particular unit without designating a supply level

for it. When there is no retrograde supply level, the unit performance

can be determined without considering the other units by adding the
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retrograde and repair pipelines of each individual unit and computing

measures using the unit supply levels. The same performance for the

system as a whole can usually be achieved at lower supply cost by pro-

viding a single retrograde plus central repair supply level for all

retrograde pipelines. In this case we compute a delay, as shown ear-

lier, using

= R R 2 (TR + (9)

k bases k bases

and then computing

R R

S  B BsR R (10)

k bases

which is the delay in responding to any unit's order. The unit perfor-

mance is then based on

B +k(TF +F
k k kk )

* (11)

B + T + EB(SR dk

k bases
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An alternative explanation of this model is that the retrograde repair

R Rshortages, EB(SR , XR), are allocated on the basis of the relative aver-

age demands placed by the units.

TIME-DEPENDENT MODEL

The dynamic multiechelon model requires introduction of the follow-

ing variables:

!R

XR (t) Average number of components from base k in
transportation to or in repair at the next higher
echelon at time t.

B
Xk(t) Average number of components in base repair at

time t.

F
Xk(t) Average number of components in transportation

to base k at time t.

sR (t) Supply level for the retrograde pipelines at
time t.

Sk(t) Supply level at base k at time t.

* The average shortage at time t in the retrograde transportation pipeline

is given by the expected backorders,

EB R(SR(t),XM(t))

Now, if location k is the only one supported, then the shortages seen at

that location are given by the excess of local repairs and unfulfilled
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orders (placed with the higher echelon) over the local supply level,

Sk(t). The average number of unfulfilled orders at time t is given by

UX(t) = XF(t) + EB R(SR(t), Xk(t)) (13)

Depending on the repair function at the higher echelon, the average

number of components in the forward pipelines can be difficult to deter-

mine, because the number must be conditional on the completion of repair

and retrograde transportation. A useful alternative representation of

the unfulfilled orders is _ven by the demands placed during one forward

transportation time (since all of these must be unfulfilled) plus the
F

shortages that existed at time t - T in the retrograde plus repair por-
k

tion of uhe system. The average unfulfilled orders are then

t F

X U M tF d R(s)ds + EB R(SR(t T Tk),Xk(t - Tk F (14)

k

and the average pipeline at location k is

t M T dR(s)ds + EBR(sR(t Tk),Xk(t TF))

k

+ XB(t)

(15)

=X (t) + X (t)

k
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The development for multiple locations or squadrons served by one

higher echelon repair facility is similar, except we assume that the

supply level, SR(t), applies to all retrograde pipelines and that the

shortages must be allocated back to the units. Thus,

X R(t) X R ( t) (16)

k bases

and the average shortages in the retrograde portion of the system are

EB R(SR(t),R (t)) . (17)

These shortages should be allocated to the various locations or squad-

rons based on a criterion representative of shortage allocations in

real situations. One criterion suggested by steady-state methods is the

relative number of demands placed at time t. That is, the shortages

allocated to location k at time t are given by

d Rd(t)
EB R M k EBR(sR(t), XR(0)d (t) ( t) XCt)(18)

k ~ d R(

k bases

This represents a rather volatile reallocation of shortages when the

demands at the various locations go through sudden relative changes. An

alternative allocation is based in the time-averaged demand at the loca-

L
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tion. Let D R(t,T) be the average demands in the interval (t - T, t).

That is,

t

D R(tT)" d R(t)dt (19)

Then, we can use the allocation

D~~t R (t, )

EB ) R M k t_) EB (sR t), R(t)) (20)

k locations

The larger the value of ', the more the shortage allocation will be

influenced by (or averaged across) past orders. The appropriate value

of T is still open to empirical testing, but it seems reasonable to use

a value of T near the average time it would take the central facility to

reallocate shortages. If the only means of reallocating shortages by

the central facility is to not fulfill orders selectively, then the rate

at which they can be allocated to any location is limited by the rate of

orders placed by that location. Note that when the reallocation process

is limited in this way, the shortages allocated to any location are lim-

ited by the number of orders placed by that location. (That is, the

unfulfilled orders are limited by the orders placed.) The allocation of

backorders using the above equation and T = t will keep the average

number of backorders allocated below the average total demands from 0 to

t, since
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D R (t,O)
k BO R(S R(t), XR (t))

k( " DR(t,O)

k locations

(21)

D(t,O) DR(t,O) = DR(t,O)

Dk(t,0) k locations

k locations

In our use of the model, we have approximated the distribution of allo-

cated shortages with the Poisson or negative binomial distributions with

mean value BO (t). This approach is consistent with the steady-state
k

approaches commonly in use. (See, for example, Sherbrooke, 1968(a).)

The above equations describe with sufficient generality the multi-

ple echelon time-dependent model. Interruption of transportation and
LW

subassembly interaction with higher echelons are additional aspects of

this model.

INTERRUPTION OF TRANSPORTATION

This section describes a model that has fixed or deterministic

transportation times. Nondeterministic transportation times are possi-

ble within this model, but the description of unfulfilled orders is con-

siderably more difficult. One variation that is easily accommodated is

to allow interruptions of transportation for fixed periods of time. For

interruption of the retrograde transportation, the pipeline calculation

[ _ _
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of X (t) is modified accordingly. (See the earlier section regarding

pipeline calculations.) The cutoff of forward transportation affects

the equation for X(t). If the cutoff ends before time t - TF or
F

starts after t, there is no modification. If it starts before t - Tk

(at S) and ends after t, we use

tu M t dR(s)ds + BO R(S R(S), XR(S)) (22)

F F
If it starts prior to t - Tk and ends in the interval [t - T k,t], we use

Fthis also. If the cutoff starts in the interval [t - T ,t] and ends

after t, then the original no cutoff equation applies.

INDENTURED COMPONENTS AND MULTIPLE ECHELONS

The previous section discussed the approach for indentured com-

ponents. In that approach it was assumed that the demands for subassem-

blies occurred at the same time that demands for repairs of the parent

assemblies occurred. This is a reasonable approximation for local

repair, but is not correct for the repair of subassemblies at a facility

remote from the aircraft. In this case the demand for repair of the

major assembly occurs immediately, but the demand for a subcomponent is

not known until the parent component is received and tested at the

remote facility. The approach taken in this case (for higher echelons)

is to delay the demand for subcomponents by the transportation time (or

cutoff time plus transportation time if the retrograde transportation is
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cut off). Thus, the average demand from location k for a subcomponent

at the remote facility is given by

dR(t T R if no cutoff or if
k kcutoff ends before

kt- or starts
after t

R
dk(t) = if t falls in a cut- (23)

off period or cutoff

ends less than T k

days prior to t

,f d (s)ds if t - Tk = R where
a and indicate
the start and end of
retrograde cutoff,
respectively.

With this definition of demand, the indenture model of the previous sec-

tion operates as described earlier.

--
i

U

U



I

-61-

VII. TIME-DEPENDENT OPTIMAL DETERMINATION OF SPARE PARTS

TO MEET AN OPERATIONAL OBJECTIVE

Although built primarily as a readiness assessment tool, the Dyna-

METRIC model, because of its analytic framework, permits the determina-

tion of spare parts required to satisfy a given level of aircraft avail-

ability. In fact, this enhances the readiness assessment by giving an

answer to the question of how many additional spare parts are needed to

provide a given level of readiness when goals are not achieved. (Of

course, spare-parts provisioning is only one of several ways to achieve

a given level of capability.) The determination of supply levels within

Dyna-METRIC is separated into four phases, dealing with: spare parts to

overcome queueing in test facilities, spare parts for higher echelons,

spare parts for subassemblies, and spare parts of major assemblies at

the squadron. Each of the latter three phases will be discussed

separately in this section. The spare-parts determination for queueing

is described in Sec. VIII. First, however, the general approach for a

time-dependent stockage policy will be discussed.

The fact that pipelines have time-dependent probability distribu-

tions means that the optimal mix of spare components at one point in

time may not be the optimal mix at another. For example, when there is

no repair capability for some period of time for a subset of the com-

ponents, the correct mix of spares will require substantial numbers of

these components; fewer will be required if repair capability is pro-

vided at some later point in time. Clearly, there is a mix of com-

ponents that will provide the desired capability at each point in time
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at the lowest cost. This model does not determine this cross-time

optimal value for several reasons. First, the time horizon is fre-

quently a policy variable, and the cost of the spare parts is desired

for marginal increases in the horizon. That is, the decisionmakers gen-

erally want to know the incremental costs and spare parts to achieve a

given capability for a slightly lengthened time horizon. Complete

changes of the spare-parts mix as the time horizon increases may not be

desirable, particularly when supply levels already exist. Practically,

furthermore, the methodology for cross-time optimization has not been

developed. The approach taken is to compute, for each time of interest,

the marginal increase in spare parts to achieve a given capability over

those already input or determined for a previous time. Thus, embedded

in each subsequent time is a supply level that will achieve the desired

capability at all previous times.

SUPPLY LEVELS FOR SQUADRONS OR OPERATING UNITS

Aircraft mission capability at the squadron is the primary interest

and is the constraint in determining the supply level. This is

expressed as a probability of not exceeding a given number of non-

mission-capable aircraft at each time point of interest. That is, the

decisionmaker selects the confidence of achieving a given mission-

capable rate for the squadrons. In determining the supply level, the
U

model attempts to provide enough spare parts to give the desired confi-

dence at lowest cost at each point in time of interest. Thus, the

objective function is the total cost of spare parts at the squadron.

Let S. represent the spare-parts level for component i, c. the unit cost1

UI
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of component i (per-unit costs are assumed to be independent of quan-

tity), a the desired confidence level, KN the non-mission-capable rate

not to be exceeded, and P(KN,S) the probability that the non-mission-

capable rate is less than K. given a stock level S (the vector of S.'s).

Then the problem solved for each squadron or operating location at each

time of interest is

minimize ciSI
i components

!

subject to P(KN,S) > a (1)

S ofor each i,

Si integer

La where S. is the input stock level or previous time optimization stock10

level for component i. The probability function P(KN,S) is the form

given in Sec. IV for full cannibalization. That is,

Ui

P(KNS) = H pi( i  K (2)
i components

where

S1
4Qi.K%

P = Pi(k) (3)

k=O

and P (k) is the probability of exactly k failures of component i.
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The reader may observe that a necessary condition for the perfor-

mance constraint to be met is to have

S a(4)

for each i (since otherwise the product of these functions, which have

values less than or equal to 1, would not be greater than a).

Thus, the first step in the requirements process is to find a stock

level for each component that satisfies this necessary condition

independently. Once this step has been completed, the programming con-

straint will not usually be satisfied, and this is the point at which

optimization comes into play. Marginal analysis is used to determine

the "best" mix of additional components to achieve the desired goal.

This process proceeds by investing in one additional component at a time

which is selected by finding the component that gives the largest

increase in the logarithm of the confidence level at the lowest cost.[l]

That is, we determine

V

P(KNS) (5)

IlI The logarithm of P(KN,S) allows the constraint to be converted
from a single product to a sum of terms. This separation of terms then
allows marginal analysis to find an optimal or nearly optimal solution.
See App. A.
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where

A £n P(KN,S) = £n [P(K,S')/P(KN,S)] (6)

and

I

SI  (S PS 2...,S 1 + 1, S 1+l,..) (7)

The component for which supply is increased one unit is the one whose

index solves

Ai  n P(KN,S) (8)
max
i ci

This process continues until the given confidence level is achieved. At

this point the resulting supply vector S* will be an "undominated" or

"efficient" solution of the base stockage problem (see Fox, 1966).[2]

For most purposes an undominated solution can be considered to be

optimal or nearly optimal.

12] To reach the undominated solution, the values of a and KN must
be set to "reasonable" levels. See App. A for more discussion of this.
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SUPPLY LEVEL FOR INDENTURED COMPONENTS

Supply levels for subcomponents are determined by a heuristic that

attempts to weight the subcomponent need based on the relative value of

shortages of parent assemblies. At the same time, it attempts to

achieve a minimum-cost solution among the subcomponents and parent

assemblies. Muckstadt (1980), in the mod-METRIC model, used a search of

the budget space to determine an optimal solution for the case in which

system performance in terms of supply backorders was to be optimized.

Kotkin (1978) described efficient cost heuristics for the dual problem,

which minimized cost subject to a backorder constraint. This approach

uses similar heuristics for determining quantities of subassemblies that

minimize cost subject to the operationally ready rate measure described

in the previous subsection.

Recall that the problem of interest is to minimize

F-c t St

i

subject to:

HPi (Q >N, a
i

(9)

S,-> Sio for all i
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The indenture problem adds the variable Si the supply level of the

subassembly j. In this case the problem becomes:

minimize F ciSi + cs SS

II

i siJ

subject to Pi (Qi'KN,Si,S i) > a (10)

S, > 0 for all i

S9 > 0 for all j

where Ss i represents the supply of all subcomponents that have component

i as a parent. Note that the variable name P1 (QiKN,Si) has been
Ss i

expanded to show the dependence on S by writing it as

i Si
P(QiKN,Si,S

With the logarithmic transformation this becomes

minimize ciSi + ic;Ss

i i

subject to ,Zn P (QiKNSipsi) n a (11)
i

Si > 0 for all i

S5 > 0 for all J
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An appropriate Lagrange multiplier, Y, allows the constraint to be moved

to the objective.[31 This converts problem (11) to the following form:

1W minimize Lc, Si + scjS - ( P(QiK, SSi)- n
i .3 J n P (iKN V

subject to S, > 0 for all i (12)

s > 0 for all j

With an appropriate value of Y (we will show how to find an approx-

imate Y shortly), this problem is equivalent to (11). When Y and S. are

.3

heuristic is to:

1. Start with a given value of S , say S
LJ A

2. Determine S. under the procedure given earlier in this1

section.

3. Determine an appropriate value of Y.

4. Determine S given Y.
J

5. Redetermine S. given the new values of S .
1 J

[3] Fox (1978) and Fox and Landi (1969) discuss the existence of
this multiplier. It can be thought of as a cost or penalty for not
satisfying the performance constraint.
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Once step 2 has been completed, the value of Y can be approximately
rS

determined by assuming that Ss is constant and applying an optimality
J

condition to problem (12).[4] That is, if S = (S, $2 ,..., Sk) solves

(12), then

ci(S i + 1) - ci(S1 ) - y [in P i(QIKN)SI + I,Ssi) - in Pi(QiKNSS >_ 0

for all 1 (13)

* and

c i - I) - ci(S) - y [in Pi(QIKN,Si - I'Ssi

(14)

- in Pi(QiKN,SiSi)] > 0

for all i

Thus,

c 1  (15)
in [P (QIKN,Si + iS'i )/P(QIKNSiS S)i

[4] This condition merely states that the optimal value of the vec-
tor S must give a smaller value of the objective than does any other
value.
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and

I- t

y > Si i si (16)

Ln [P (QIKN,SL,Ss )/P (QIKN,S i  i's

which provide bounds on the value of Y. The algorithm uses the upper

bound, which will err on the side of too many subassemblies (which typi-

cally cost much less than the parent assemblies). That is, it uses

y = mln i (17)
I Xn [Pi(QiKN,S i + i,S s)iP i(Qi KNsi sS)

This is particularly convenient since it is the reciprocal of the ratio

used in the solving (1) at step 2, and the index solving this

corresponds to the last component of supply increased in that process.

(Thus, the approximate Y is immediately known because it is the marginal

improvement ratio for the last stock increase.)

Given this value of Y the subassembly problem is next solved in

step 4 of the heuristic. That problem is, given primary assembly stock,

minimize Ecjs, - XL~n P (QKSS ) -n

(18)

S > 0 for all .
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Appendix B shows that this problem is solved approximately by find-

ing a level of stock for each subcomponent j that satisfies

RRj (S') I + - (19)Ij

where RRj(Ss) is the ,ready rate for subcomponent j defined in Sec. III

and B. is a constant defined in App. B.
J

SUPPLY LEVELS FOR HIGHER ECHELONS

The description of multiple echelons in Sec. VI indicated that, for

one base or squadron served by one higher echelon, it was more efficient

to determine one system supply level rather than provide supply levels

for the squadron and higher echelon separately. This subsection

addresses the problem of providing spares to a higher echelon facility

serving several squadrons at different locations. In this case it is

usually efficient to provide a system supply level for the retrograde

plus repair pipeline of the higher-echelon facility, and separate local

supply levels for each of the squadrons to cover the order and shipping

time of ordered components and for those repairs done at the squadron.

For the centralized supply, we employ a heuristic similar to that used

for indentured components:

1 Start with a given level of supply at the higher echelon, say

ScoSC.

2. Determine S. at the squadrons as discussed earlier (after com-

Copliting the e&fect of central system shortages using Si ).
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3. Determine an appropriate set of Lagrange multipliers given the

solution in step 2.

c
4. Determine the supply level, Si, at the higher echelon given the

multipliers and the S. from step 2.

5. Redetermine S. at each squadron given the new value of central1

system supply.

The overall problem to be solved is[5]

minimize EciSi +Fi c
i i

k k c

subject to H Pi(QiKN,Si,Si) > a for all k locations (20)
served [6]

k c
S > 0 for all k and i.

Using Lagrange multipliers and the logarithmic transformations, this

problem becomes

minimize EciSk + EciSc

k locations I i i i

- , v(E n pk(Q K Sk'Sc) - Xna
k locations k i( N' I I

k c (21)
Si S i  > 0 for all k and i.

[5] The new notation indicates the dependence of the constraint on
the central system supply rather than the subcomponents, and also shows
the dependence on a location dependent supply level, Sk .

[6] The probability expression in the constraint is the same as
that in problem (1) and problem (2) of this section and described ear-
lier in Sec. IV.
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c c

With the central system supplies, Si, held constant (at Si ), this

decomposes into subproblems involving only the component i at location k

and the squadron or base supply:

mn c1Sk + y(£n pk(Q k comin i Si k In PiKN',SiSi ) n a)

(22)

~k
Sk >0 .

Ui

The value of Yk is available after this problem is solved through margi-

nal analysis, as shown in the last subsection. (In fact, it is the same

Lagrange multiplier that is used in the indenture problem for the squa-

dron or base.) At step 4 the problem solved is

min c SC - E In Pk(QKN, Sc,) .
Sk i lNSiiSP

(23)

S c>0Si _ •

With the base-level supply, Sk , held constant at the value given in
Ii

step 2, this problem is solved by increasing the central-system spares

level, S , until the objective function no longer decreases.

The reader may observe that since the model of the higher echelon,

described in Sec. VI, actually has that echelon affecting the squadron's
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performance after a time delay equal to the forward transportation time,

the point in time for determination of a supply level is ambiguous for

several locations with different transportation times. The function

k k c
Pi(Qi,,Si, Si ) , for each location accommodates these separate times, and

it is necessary only to assume that S remains constant during the dif-
i

ferent delay periods.

The calculation of subassembly supply levels at the higher echelon

cinteracts with the calculation of S i . Given the subproblem (23), we can

break this into one involving identical components:

k k c sc

min ciSC- Y LIn Pk(QiK SSSc)
Sk k i iN' i i'i

subject to Si'S1  - (24)

sc sc sc
where SI = ( 1 , *S 2  S k

* a vector of subcomponents associated with component i at the higher

echelon. Actually, since the subcomponents may affect more than one

major assembly, we need to solve

mck k c sc
rain ciS - k £n Pi(QiKN,S,SS C)- sk

(25)

c sc > 0 for all i.
St , Si -
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This problem is made separable in terms of the subcomponents by holding

S S c and Sc fixed, and differentiating with respect to the subcomponent1 i

shortage, B.(S C), as shown earlier. We then obtain, as illustrated in

App. B, subproblems with the form

min c S3 - Y8k B (S C)

(26)

SJ 0

* where

k k c sc

k 1 pi(QiK,Si ,Si ,ShJ

-J p k (QIKN, S, S,S B

components B ) (27)

which

have
subassembly i

The subproblem can be easily solved by increasing the value of S
sc until

the objective function no longer decreases. The complete algorithm is:

1. Start with a given level of supply at the higher echelon, say

S.° and S S. for all components and subcomponents.
1 1

* 2. Determine Sk at each of the k squadrons (after computing the

effect of central system shortage using 
S ° and S °).

3. Determine an appropriate set of Lagrange multipliers given the

M solution in step 2.

V
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4. Given the value of S from step 2, and the initial value of S
c °

kj
kfor all subcomponents, determine the partial derivative B. withJ

respect to each subcomponent for each location.

5. Determine the optimal value of Ssc for the central system.• J

6. Given this value, determine the optimal value of S for the

central system using Yk and subproblem 23.
7. Given S' and Ssc redetermine S

1 J S.

t1

U
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VIII. LIMITED SERVICE CAPACITY

A very basic assumption in Hillestad and Carrillo (1980) and in the

previous sections of this report is that sufficient slack service capac-

ity exists to avoid queueing in the repair of components. Pokress

(1977) has shown that the infinite-server assumption is valid as long as

average demands remain less than 80 percent of service capacity. But

surges of aircraft flying may cause increased failures such that the

component repair resources (manpower, facilities, or test equipment)

become overloaded. When this overload goes on indefinitely, the repar-
I

able component queues can be very large, but when there is slack capac-

ity after a surge, the queue can be worked down. We are interested in

the time-dependent mission capability of aircraft, that is, how fast the

mission capability degrades and recovers from such variations in demand.

The steady-state results of queueing theory for limited-server queues do

not provide information about this transient behavior, and the few

analytical solutions to limited-server queues in the transient case are

too restrictive to capture the complexities of multiple-use test equip-

ment, priority scheduling, etc.

Dyna-METRIC approximates the queueing probability distribution with

a simple simulation. The basic approach has been to decompose the

queueing and service portion of the pipeline. That is, the total aver-

age pipeline of a given component is assumed to be composed of

X(t)= X(t) + B(t)

IA
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where X(t) is the average pipeline as computed in Sec. II, and B(t) is

the average number of components in a component repair queue. (Note

that Air Force steady-state inventory calculations assume that the

repair time includes both average service time and average queueing

time.)

The determination of B(t) is currently done by a mean-value simula-

tion that fails components and schedules them to the limited servers,

based on a rule that places highest priority for repair of those com-

ponents with the greatest shortages. The simulation considers the avail-

ability of test equipment or specialists in scheduling the repairs and

creates an estimate of B(t) for use by the remaining processes in Dyna-

METRIC. Only the average queue size, B(t), is stored. The probability

distributions are not estimated in the simulation; instead, they are

assumed to be the same as those for X(t). The simulation is discussed

in Pyles et al. (1981) and will not be discussed further here.

Two aspects of limited service capability are modeled analytically,

however, and will be discussed further in this section. These are the

availability of failing test equipment and additional spare parts re-

quired to avoid shortages when there is not sufficient service capacity.
S

TEST EQUIPMENT AVAILABILITY

W When test equipment is unreliable, its availability is an important

consideration in periods of high transient demand (such as the onset of

a conflict) since both the queues and the required inventory of spare

parts to achieve a desirable mission capability may be quite large. In

wi
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the simulation to determine queue sizes, it is necessary to kno. the

probability that a given test stand is available at a random point in

time. The following assumptions, based on empirical studies of certain

types of test equipment by Gebman, Shulman, and Moore (forthcoming)

allow us to use a dynamic pipeline model similar to those in Sec. II to

determine this probability. These are:

1. The rate at which test-stand part-shortages are generated at

any point in time is known to be d T(t). (Note that only the

overall rate of shortage is represented, and that particular

components of the test stands are not distinguished in this

model.)

2. The resupply for test-stand shortages is given by the probabil-

ity function F (t,s), the probability that a shortage at time

s remains at time t.

3. Shortages of test-stand components are consolidated on the

smallest number of stands possible.

4. A shortage of a test-stand component has an associated proba-

bility, pi, that an aircraft component i can still be tested

despite that shortage.

5. Shortages occur on no more than one of any test-stand component

type at a time, so that the number of test stands not opera-

tional after cannibalization is never more than one stand.

Using these assumptions, we can determine the average number of test-

stand shortages with

TT -T
XT(t) - o d(s)F (t,s)ds . (1)
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The probability of having exactly k shortages is then, under a Poisson

rate of shortage generation,

T TMk-eX (t)
P (t,k) k (T(t)ke-(2)

The probability that the "hangar queen" test stand can repair component

i, given k shortages, is then

k XT k -X (t)
iT t) e (3)P1 (t ,k) = k

kT

-(l-p MXt )  p k XT M ke-Pi X  t)

=e k!

The probability that the hangar queen test stand can repair com-

ponent i at time t is

(1-P )XT(t) T
= PT(t,k) = e px t) eP XM

k=0 k-0

(4)

= e-(l-pt)XT(t)

w
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This probability is used in the simulation to determine availability of

the test equipment for testing certain types of components. Tests are

first scheduled on the hangar queen, utilizing what capability exists,

are then scheduled on the remaining pieces.

SPARE AIRCRAFT COMPONENTS TO OVERCOME QUEUES

Additional spare-parts inventory levels are determined for cases in

which there is insufficient service capacity. These spare parts allow

the aircraft to remain at the desired level of mission capability even

though certain components are not repaired. Clearly, this is an option
I

only for a limited time period, since it is never possible to provide

spares for insufficient service capacity over an unlimited time span.

The approach taken is to determine whether the average service capacity

will be exceeded over the time horizon of interest, and when it is, to

"buy out" enough low-cost components to allow the average service capac-

ity to match the average service demands. Thus, the procedure is as

follows:

1. Determine the average service capacity of each server type for

the period.

2. Determine the average service demands for each server type for

the period.

3. Determine, for those server types with insufficient capacity,

the component with the lowest ritio of cost to test-time. Buy

spares for that component until either service capacity is ade-

4q quate (assuming that each spare represents a test that does not

have to be performed during the period) or until the average



-82-

demands for the component for the period are covered. Continue

until adequate service capacity exists for each server type.

These "server inadequacy" spares are used along with input supply

levels as the starting basis for supply-level determination in the pre-

vious sections.

W

Ww

w

!

[F
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Appendix A

CONVERGENCE OF THE MARGINAL ANALYSIS APPROACH

This appendix describes conditions of convergence for the basic sup-

ply optimization algorithm of Sec. VII, problem (1). That problem is

restated here as follows:

minimize CS i £

i components

subject to P(KN,S) > 9 (i)

S, Sio for each i

Si integer

The marginal analysis algorithm attempts to find an "undominated" solu-

tion to this problem.

An undominated solution is defined by Fox (1966) as one for which

cs < cs* => P(KN,s) < P(KN,S*) (2)

and

CS CS* => P(KNS) P(KNS*) (3)

N
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That is, since by definition P(KN,S*) a, any solutions that are better

than S* must have a value for P(KN,S) that lies between P(KN,S*) and a.

If P(KN,S*) = a, then S* is an optimal solution. Since the value of S*

is arrived at by increasing some component's supply level by one unit at

the last step, we know that P(KN,S*) is likely to be close to a.

Let S* be arrived at on the kth iteraticn and S 
k -  be the previous

value of S. Let S be the optimal solution to problem (1). Then we also

know that

* P(KN,S ) < P(K S) P(KS*)(4)

The reason that logarithms are used is to guarantee convergence to an

undominated solution. Marginal analysis will provide an optimal solu-

tion to the problem

minimize ciS ii

subject to (S) > a

S, > 0 for all i

if O(S) is separable into O(S) = #i (S i) and each of these is a
i

concave, increasing function. See Fox (1966). Clearly, the funct:.on
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P (KN'S) - 11 P1i (Qi*K N)(6

is not separable. However, we note that

P(K N'S) > a <=> £n P(K% S) > Xn a (7)

and

P(KN,S) < a <=> £n P(KN'S) < Xn a (8)

when P(KN,S) is an increasing monotonic function of S; therefore an

undominated solution to

minimize Ec si

subject to:

Xn P(KNWS) > 2.n a (9)

s >0
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is an undominated solution to (1). Furthermore,

In P(KN,S) - kn Pi(QiKN) -n P(Qi K N) , (10)
I i

so that we have a separable problem. It remains to show when

in Pi (QiK) is concave. Concavity of a function f(S i) on integer

values of Si is defined by

f(S) - f(Si - 1) > f(Si + 1) - f(S) . (11)

Let

Pi(Q K ,S)- Pi(QiK) to show the dependence on Si .

If P (Qi ,Si) is concave, then in P (QiI,si) will also be concave.

Now,

QiK +Si
Pi(QKqSt) E E Pi(k) (12)

k=O

Then

W Pi(QtKNS i ) - P I(QtKN,Si - 1) - Pi(QIKNSt) , (13)

w
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and

P (QINS + )-P (QIKi P P(QIKII+1 (14)

Thus, we have concavity if

P (QIKI+1 P(KNSi (15)

The recursive equations for the two distributions in Dyna-METRIC are:

pk+l =X(t) pkPoisson (6

S(k+l) 1 16

pk+l r±!k 2 Negative Binomial (17)

i k+1 q i

where
X( t)

r q 1

q =variance-to-mean ratio, and

p =q -1

For each of these distributions we see that if k > X(t), thenP l

ki
< kand the conditions for concavity are satisfied. Thus, the separ-

able terms of the constraint

9 Xni P (QIKN,Si)
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are concave for Si+QiKN > Ai(t). For a reasonable value of confidence-3-

(that is, for a reasonable value of a) and mission non-capability (KN)'

we can therefore expect the functions to be concave and the conditions

for convergence to be satisfied.

w

w
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Appendix B

THE INDENTURED SUBPROBLEMS

This appendix describes the derivation and form of the indentured

subproblems for optimization problem (18) in Sec. VII.

Given primary assembly stock, we wish to minimize

SPi(QiK ,ssSi)-

S > 0 for all J

where

i si QiK+Si i

P (QIKN,SI,S) = , P (k,Xi(t) + B(S )) . (2)
k=0

The function B(Ssi) represents the average shortage allocated to com-

ponent i due to shortages in its subcomponents. As shown in Sec. V, the

worst case is to assume that the sum of backorders of the subcomponents

contributes directly to additional primary components in the pipeline.

(This would not be the case if cannibalization of subcomponents were

performed.) Again, we have used this conservative approach because gen-

erally the much lower cost of subassemblies allows a little more leeway

in overbuying." Under this assumption we have

q •N subassemblies

B(S~1  
- Ba(S') (3)

i.1
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To create a separable problem for the subassemblies, we use a

i si Si
linear approximation of Pi(QiKN,S ,S ) with respect to B(Ss). Thus,

si

i( Si N 3Pi(QIKN,SI,S ) S
P (Q1 •,SiS ) (g(s) - B (SJ. 3B J B(S')

(4)

s i
+ P (QIK%,SiS )

Leaving out the constant terms and substituting the approximation into

problem (4) gives the revise, problem:

si

%11 
P i (Qi% , i, S )i

min S; - __, __ ,_,__ __ E, sI s "

(5)

S > for all j

This separates into subproblems for each subcomponent in the form

0

min c 3~~P (Q£KN,Si,Si B(;i;i P fnvSK aB (S8)I i

(6)

Sj > 0 for all j
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Let Oj be the value of the term in brackets. Then we have the problem,

min c S 8- YO B (SB)

J J

(7)

Sj > 0,

Is
which is easily solved (once a and a are known) by increasing S from 0

until the objective function no longer decreases. The resu.t is the

amount of subassembly stock and completes step 4. The value of 8. must
1 J

be determined through perturbation of S in Pi (QiKN,Si,S") except for

the case of the Poisson distribution. In this case it is easy to show

that

Pi(Q.,SS ) (At(t) + B(SSi (c + S8.P _ e- iit) + B(S'i) •(8

aB (S) (QiKN + S)!

Furthermore, for the Poisson case, the solution to (7) can be converted
s

to a ready-rate criterion on S . The solution to (7) requires that

c + 1) - c S - y 8j[Bj(S3+ 1) - B (S)] >0 . (9)

[

For the Poisson distribution, the difference in brackets is merely

[RRJ(S) - 1]. This gives us the criterion

S 
[

YOj[RRj (S).- 1 cj[J

I
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Since 13 is negative, we get the criterion

3s
S

RR-(S) > 1 (10)

which implies that the solution to (7) can be obtained by increasing the

stock of component j until it has a ready rate satisfying this cri-

terion.

K,
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